New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42205306
(http://iopscience.iop.org/1751-8121/42/20/205306)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.154
The article was downloaded on 03/06/2010 at 07:47

Please note that terms and conditions apply.

New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term

Wen-Chao Qiang, Kai Li and Wen-Li Chen
Faculty of Science, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
E-mail: qwcqj@pub.xaonline.com

Received 19 September 2008, in final form 4 March 2009
Published 5 May 2009
Online at stacks.iop.org/JPhysA/42/205306

Abstract

We proposed a new approximate scheme for a centrifugal term. Using new approximate formula for $1 / r^{2}$, we obtained the bound state and scattering state solutions of the Manning-Rosen potential with centrifugal terms. All approximate analytical formulae of energy eigenvalues, normalized wavefunctions and scattering phase shifts are presented. In addition, we also suggested another much better approximate formula to $1 / r^{2}$ for bound states. All data calculated by the above approximate analytical formulae are compared with those obtained by using the numerical integration method in the bound state and scattering state cases. Furthermore, the complete s-wave scattering state solutions for the Manning-Rosen potential are also naturally derived.

PACS numbers: $03.65 .-$ w, 03.65.Ge, 03.65.NK

1. Introduction

It is well known that the Manning-Rosen potential is an important exponential-type potential $[1,2]$ which is given by

$$
\begin{equation*}
V(r)=\frac{1}{\kappa \beta^{2}}\left[\frac{\alpha(\alpha-1) \mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}-\frac{A \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}\right], \quad \kappa=2 \mu / \hbar^{2} \tag{1}
\end{equation*}
$$

where A and α are two dimensionless parameters [3], but parameter β has the dimension of length. This potential has been used as a model to study the energy eigenvalues of diatomic molecules and has important properties. It remains invariant by mapping $\alpha \leftrightarrow 1-\alpha$ and has a minimum value $V\left(r_{0}\right)=-\frac{A^{2}}{4 \beta^{2} \alpha(\alpha-1)}$ at $r_{0}=\beta \ln \left[1+\frac{2 \alpha(\alpha-1)}{A}\right]$ for $\alpha>1$. Furthermore, this potential reduces to the Hulthén potential [4] for $\alpha=0$ or 1 .

The Manning-Rosen potential has attracted much attention of researchers. Diaf et al investigated this potential for s-wave $(l=0)$ by the path integral approach [5]. Dong et al also obtained the bound state s-wave solutions of this potential [3]. We further found the bound state solutions of this potential with any l values [6]. Sameer et al obtained approximate l-state solutions of the Manning-Rosen potential by the Nikiforov-Uvarov (NU) method [7]. In addition, they found approximate l-state solutions of the D-dimensional Schrödinger equation for the same potential [8]. On the other hand, the study of the scattering state solutions of the Schrödinger equation with the Manning-Rosen potential is progressing. Chen et al presented exact solutions of the scattering states for the s-wave with this potential [9]. Wei et al found the approximately analytical scattering state solutions of the l-wave Schrödinger equation for the Manning-Rosen potential by a proper approximation to the centrifugal term [10].

Analyzing above-mentioned works, we see that in order to overcome the difficulty to solve the Schrödinger equation with the centrifugal term, all authors have used some approximation for $1 / r^{2}$. It is obvious, in all cases of $l \neq 0$, whatever the bound state or the scattering state, that all solutions are approximate ones. In the case of the bound state, these approximations cannot always give results in good agreement with that obtained by the numerical integration method for any l values and some parameter values of the potential [6]. In the case of the scattering state, the data calculated by the approximate phase shift formula were never compared with any numerical results [10]. Therefore, one cannot know the veracity of the approximation used for the scattering state under consideration. This situation strongly suggests one should find a much better approximate expression for the centrifugal term to solve the Schrödinger equation with any l values for the bound and scattering states and judge its accuracy by comparing the approximate results with corresponding numerical data. This is just the aim of this paper. We shall develop a new approximation scheme which can be uniformly used to solve the Schrödinger equation with the centrifugal term for both bound state and scattering state.

This paper is organized as follows. In section 2 we derive an approximate expression for $1 / r^{2}$ and the corresponding radial Schrödinger equation. Sections 3 and 4 are devoted to solving the bound states and scattering states, respectively, for the potential. Some numerical results and a more effective approximation to the centrifugal term only for bound states are presented in section 5. Some special cases of our results are discussed in the same section. The concluding remarks are given in section 6 .

2. A new approximation scheme

The Schrödinger equation with natural units $\hbar=\mu=1$ is given by

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla^{2}+V(r)-E\right] \psi(\mathbf{r})=0 \tag{2}
\end{equation*}
$$

By taking $\psi(\mathbf{r})=r^{-1} R(r) Y_{l m}(\theta, \phi)$ and considering potential (1), we obtain the radial Schrödinger equation as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} R(r)}{\mathrm{d} r^{2}}+\left[2 E-\frac{1}{\beta^{2}}\left(\frac{\alpha(\alpha-1) \mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}-\frac{A \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}\right)-\frac{l(l+1)}{r^{2}}\right] R(r)=0 \tag{3}
\end{equation*}
$$

which has no analytical solutions except for s-wave $(l=0)$ due to the centrifugal term. To find a quasi-analytical solution of this equation, we have to take some approximation for the centrifugal term. Instead of using the following approximate formula:

$$
\begin{equation*}
\frac{1}{r^{2}} \approx \frac{1}{\beta^{2}} \frac{\mathrm{e}^{-r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}} \tag{4}
\end{equation*}
$$

Figure 1. A graphic comparison of the variation of $r^{2} f(r)$ (dashed) and $r^{2} F(r)$ (dot-dashed) with r, where $f(r)=\frac{1}{\beta^{2}}\left[\frac{\mathrm{e}^{1 / \beta} \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}+\frac{\mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}\right], F(r)=\frac{1}{\beta^{2}} \frac{\mathrm{e}^{-r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}, \beta=1 / 0.075$.
which has been used by many authors, here we propose another approximation scheme to $1 / r^{2}$

$$
\begin{equation*}
\frac{1}{r^{2}} \approx \frac{1}{\beta^{2}}\left[\frac{\mathrm{e}^{1 / \beta} \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}+\frac{\mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}\right] \tag{5}
\end{equation*}
$$

To illustrate the difference between the two approximation schemes, we plotted the variation of $\frac{r^{2}}{\beta^{2}}\left[\frac{\mathrm{e}^{1 / \beta} \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}+\frac{\mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}\right]$ and $\frac{r^{2}}{\beta^{2}} \frac{\mathrm{e}^{-r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}$ for one typical value of parameter β in figure 1. It is obvious that for large $\beta, \mathrm{e}^{1 / \beta} \rightarrow 1$, the right-hand side of equation (5) approaches $\frac{\mathrm{e}^{-r / \beta}}{\beta^{2}\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}$, but it can greatly improve the behavior of the approximation to $1 / r^{2}$ when β is small ${ }^{1}$. Substituting this equation into equation (3) and simplifying, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{2} R(r)}{\mathrm{d} r^{2}}+\left[2 E-\frac{1}{\beta^{2}}\left(\frac{\alpha^{\prime}\left(\alpha^{\prime}-1\right) \mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}-\frac{A^{\prime} \mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}\right)\right] R(r)=0, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{\prime}=\frac{1}{2}\left[1+\sqrt{(2 l+1)^{2}+4 \alpha(\alpha-1)}\right], \quad A^{\prime}=A-l(l+1) \mathrm{e}^{1 / \beta} \tag{7}
\end{equation*}
$$

It is worth noting that α^{\prime} is equal to $1+\delta$ in [6] and λ of [10]. Equation (6) is in the same form as equation (3) with $l=0$ and can be solved analytically. Letting

$$
\begin{equation*}
z=\mathrm{e}^{-r / \beta} \tag{8}
\end{equation*}
$$

and substituting it into equation (6) leads to

$$
\begin{equation*}
z^{2} \frac{\mathrm{~d}^{2} R(z)}{\mathrm{d} r^{2}}+z \frac{\mathrm{~d} R(z)}{\mathrm{d} r}-\left[-2 E \beta^{2}-\frac{A^{\prime} z}{1-z}+\frac{\alpha^{\prime}\left(\alpha^{\prime}-1\right) z^{2}}{(1-z)^{2}}\right] R(z)=0 \tag{9}
\end{equation*}
$$

[^0]It is worth noting even though equations (6) and (9) with some shifted parameters have their partners in [3, 6], some calculations in [3, 6] are not complete or need to be improved. Therefore, in the following two sections, we shall solve equation (6) for the bound state and scattering state, respectively, instead of directly borrowing the results of $[3,6]$.

3. Bound state solutions

For the bound state, considering $R(z) \rightarrow 0$ at two boundaries

$$
z \rightarrow \begin{cases}0, & \text { when } r \rightarrow \infty \tag{10}\\ 1, & \text { when } r \rightarrow 0\end{cases}
$$

and energy E is negative, we take the following radial wavefunction of the form:

$$
\begin{equation*}
R(z)=(1-z)^{\alpha^{\prime}} z^{\lambda} F(z) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\beta \sqrt{-2 E} . \tag{12}
\end{equation*}
$$

Substitution of this trial solution into equation (9) leads to the following hypergeometric equation [11]:
$(1-z) z F^{\prime \prime}(z)+\left[2 \lambda+1-z\left(2 \alpha^{\prime}+2 \lambda+1\right)\right] F^{\prime}(z)+\left[A^{\prime}-\alpha^{\prime}(1+2 \lambda)\right] F(z)=0$,
whose solution is nothing but the hypergeometric functions

$$
\begin{equation*}
F(z)={ }_{2} F_{1}(a, b ; c ; z), \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& a=\alpha^{\prime}+\lambda-\sqrt{\lambda^{2}+\alpha^{\prime}\left(\alpha^{\prime}-1\right)+A^{\prime}} \\
& b=\alpha^{\prime}+\lambda+\sqrt{\lambda^{2}+\alpha^{\prime}\left(\alpha^{\prime}-1\right)+A^{\prime}}, \tag{15}\\
& c=1+2 \lambda .
\end{align*}
$$

By considering the finiteness of the solutions, the quantum condition is given by $\alpha^{\prime}+\lambda-\sqrt{\lambda^{2}+\alpha^{\prime}\left(\alpha^{\prime}-1\right)+A^{\prime}}=-n_{r}, \quad n_{r}=0,1,2, \ldots,\left[\sqrt{A-\alpha(\alpha-1)}-\alpha^{\prime}\right]$,
where $[f]$ denotes the largest integer inferior to f. From equation (16) we have

$$
\begin{equation*}
\lambda=-\frac{n_{r}^{2}-A^{\prime}+\left(1+2 n_{r}\right) \alpha^{\prime}}{2\left(n_{r}+\alpha^{\prime}\right)} \tag{17}
\end{equation*}
$$

Substitution of this equation into equation (12) yields the energy eigenvalues

$$
\begin{align*}
& E=-\frac{1}{2 \beta^{2}}\left[\frac{n_{r}^{2}-A+\mathrm{e}^{\frac{1}{\beta}} l(l+1)+\left(2 n_{r}+1\right) \alpha^{\prime}}{2\left(n_{r}+\alpha^{\prime}\right)}\right]^{2}, \tag{18}\\
& n_{r}=0,1,2, \ldots\left[\sqrt{A-\alpha(\alpha-1)}-\alpha^{\prime}\right],
\end{align*}
$$

which is slightly different from equation (15) of [6] because of the factor $\mathrm{e}^{1 / \beta}$ before $l(l+1)$.

We now turn to the eigenfunction. Using equation (16) we can write the radial wavefunction as

$$
\begin{equation*}
R(z)=N(1-z)^{\alpha^{\prime}} z^{\lambda}{ }_{2} F_{1}\left(-n_{r}, n_{r}+2\left(\alpha^{\prime}+\lambda\right) ; 2 \lambda+1, z\right) \tag{19}
\end{equation*}
$$

where N is a normalization constant to be determined from the normalization condition $\int_{0}^{\infty} R(r)^{2} \mathrm{~d} r=1$. This normalization condition can be further written as

$$
\begin{equation*}
\beta N^{2} \int_{0}^{1}(1-z)^{2 \alpha^{\prime}} z^{2 \lambda-1}\left[{ }_{2} F_{1}\left(-n_{r}, n_{r}+2\left(\alpha^{\prime}+\lambda\right), 2 \lambda+1, z\right)\right]^{2} \mathrm{~d} z=1 \tag{20}
\end{equation*}
$$

from which and by using the integral formula [12]

$$
\begin{align*}
& \int_{0}^{1}(1-z)^{2(\delta+1)} z^{2 \lambda-1}{ }_{2} F_{1}(-n, 2(\delta+\lambda+1)+n ; 2 \lambda+1 ; z)^{2} \mathrm{~d} z \\
&=\frac{(n+\delta+1) n!\Gamma(n+2 \delta+2) \Gamma(2 \lambda) \Gamma(2 \lambda+1)}{(n+\delta+\lambda+1) \Gamma(n+2 \lambda+1) \Gamma(2(\delta+\lambda+1)+n)}, \quad \delta>-\frac{3}{2} \bigwedge \lambda>0, \tag{21}
\end{align*}
$$

we obtain the analytical expression of the normalization constant

$$
\begin{equation*}
N=\frac{1}{\Gamma(2 \lambda)} \sqrt{\frac{\left(n_{r}+\alpha^{\prime}+\lambda\right) \Gamma\left(n_{r}+2 \lambda+1\right) \Gamma\left(2\left(\alpha^{\prime}+\lambda\right)+n_{r}\right)}{2 \beta \lambda n_{r}!\left(n_{r}+\alpha^{\prime}\right) \Gamma\left(n_{r}+2 \alpha^{\prime}\right)}} . \tag{22}
\end{equation*}
$$

This expression of the normalization constant, which can also be expressed by δ used in [6] instead of α^{\prime}, is more compact and concise than equation (18) in [6].

4. Scattering state solutions

We now turn to solve equation (9) for scattering states. For this purpose and the convenience of later calculation, we make the following variable change:

$$
\begin{equation*}
x=1-z \tag{23}
\end{equation*}
$$

and define

$$
\begin{equation*}
k=\sqrt{2 E} \tag{24}
\end{equation*}
$$

Then equation (9) becomes
$\frac{\mathrm{d}^{2} R(x)}{\mathrm{d} x^{2}}-\frac{1}{1-x} \frac{\mathrm{~d} R(x)}{\mathrm{d} x}+\left(\frac{k^{2} \beta^{2}}{(x-1)^{2}}-\frac{A^{\prime}}{(x-1) x}-\frac{\left(\alpha^{\prime}-1\right) \alpha^{\prime}}{x^{2}}\right) R(x)=0$.
Considering the boundary condition of the scattering states, we take the following trial wavefunction:

$$
\begin{equation*}
R(x)=x^{\alpha^{\prime}}(1-x)^{-\mathrm{i} k \beta} f(x) \tag{26}
\end{equation*}
$$

and substitute it into equation (25), thus yielding the following equation for $f(x)$:
$(1-x) x \frac{\mathrm{~d}^{2} f(x)}{\mathrm{d} x^{2}}+\left[2 \alpha^{\prime}+\left(2 \mathrm{i} k \beta-2 \alpha^{\prime}-1\right) x\right] \frac{\mathrm{d} f(x)}{\mathrm{d} x}+\left[A^{\prime}+\alpha^{\prime}(2 \mathrm{i} k \beta-1)\right] f(x)=0$,
which is a hypergeometric equation, so its solution is a hypergeometric function

$$
\begin{equation*}
f(x)={ }_{2} F_{1}(a, b ; c ; x), \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
& a=\alpha^{\prime}-\mathrm{i} k \beta-\sqrt{A^{\prime}-k^{2} \beta^{2}+\alpha^{\prime}\left(\alpha^{\prime}-1\right)} \\
& b=\alpha^{\prime}-\mathrm{i} k \beta+\sqrt{A^{\prime}-k^{2} \beta^{2}+\alpha^{\prime}\left(\alpha^{\prime}-1\right)} \tag{29}\\
& c=2 \alpha^{\prime} .
\end{align*}
$$

From equations (26), (28), (29), we can write down the radial wavefunction of the scattering state as

$$
\begin{equation*}
R(r)=C\left(1-\mathrm{e}^{-r / \beta}\right)^{\alpha^{\prime}} \mathrm{e}^{\mathrm{i} k r}{ }_{2} F_{1}\left(a, b ; c ; 1-\mathrm{e}^{-r / \beta}\right), \tag{30}
\end{equation*}
$$

where C is a normalization constant. We now find the asymptotic expression of the above function for large r. For this purpose, using the following transformation formula of the hypergeometric function $[11]^{2}$

$$
\begin{align*}
{ }_{2} F_{1}(a, b ; c ; x) & =\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}{ }_{2} F_{1}(a, b ; a+b-c+1 ; 1-x) \\
& +(1-x)^{c-a-b} \frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}{ }_{2} F_{1}(c-a, c-b ; c-a-b+1 ; 1-x) \tag{31}
\end{align*}
$$

and ${ }_{2} F_{1}(a, b ; c ; 0)=1$, we obtain

$$
\begin{align*}
{ }_{2} F_{1}(a, b ; c ; 1- & \left.\mathrm{e}^{-r / \beta}\right)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}{ }_{2} F_{1}\left(a, b ; a+b-c+1 ; \mathrm{e}^{-r / \beta}\right) \\
& +\left(\mathrm{e}^{-r / \beta}\right)^{c-a-b} \frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}{ }_{2} F_{1}\left(c-a, c-b ; c-a-b+1 ; \mathrm{e}^{-r / \beta}\right) \\
& \underset{r \rightarrow \infty}{\longrightarrow} \Gamma(c)\left[\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}+\mathrm{e}^{-2 \mathrm{i} k r} \frac{\Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}\right] . \tag{32}
\end{align*}
$$

From equation (29) it is easy to see $a+b-c=(c-a-b)^{*}, a=(c-b)^{*}$ and $b=(c-a)^{*}$, where x^{*} denotes the complex conjugate of x. So

$$
\begin{equation*}
\frac{\Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}=\left(\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right)^{*} . \tag{33}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}=\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right| \mathrm{e}^{\mathrm{i} \delta} \tag{34}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}=\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right| \mathrm{e}^{-\mathrm{i} \delta} \tag{35}
\end{equation*}
$$

where δ is a real number. Therefore, we get the asymptotic expression of ${ }_{2} F_{1}\left(a, b ; c ; 1-\mathrm{e}^{-r / \beta}\right)$ for large r,

$$
\begin{equation*}
{ }_{2} F_{1}\left(a, b ; c ; 1-\mathrm{e}^{-r / \beta}\right) \underset{r \rightarrow \infty}{\longrightarrow} \Gamma(c)\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right|\left(\mathrm{e}^{\mathrm{i} \delta}+\mathrm{e}^{-\mathrm{i}(2 k r+\delta)}\right) . \tag{36}
\end{equation*}
$$

[^1]Substituting this formula into equation (30), we finally obtain

$$
\begin{array}{rl}
R(r) \underset{r \rightarrow \infty}{\longrightarrow} C & C(c)\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right|\left(\mathrm{e}^{\mathrm{i}(k r+\delta)}+\mathrm{e}^{-\mathrm{i}(k r+\delta)}\right) \\
& =2 C \Gamma(c)\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right| \cos (k r+\delta) \\
& =2 C \Gamma(c)\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right| \sin \left(k r+\delta+\frac{\pi}{2}\right) . \tag{37}
\end{array}
$$

Comparing this formula with the general boundary condition of the scattering state wavefunction normalized on the ' $k / 2 \pi$ scale' $R(r)=2 \sin \left(k r-\frac{\pi}{2} l+\delta_{l}\right)$, we obtain the phase shifts and the normalization constant

$$
\begin{align*}
\delta_{l}=\frac{\pi}{2}(l+1) & +\arg \Gamma(c-a-b)-\arg \Gamma(c-a)-\arg \Gamma(c-b) \\
= & \frac{\pi}{2}(l+1)+\arg \Gamma(2 \mathrm{i} k \beta) \\
& -\arg \Gamma\left(\alpha^{\prime}+\mathrm{i} k \beta+\sqrt{A+l(l+1)\left(1-\mathrm{e}^{1 / \beta}\right)+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) \\
& -\arg \Gamma\left(\alpha^{\prime}+\mathrm{i} k \beta-\sqrt{A+l(l+1)\left(1-\mathrm{e}^{1 / \beta}\right)+\alpha(\alpha-1)-k^{2} \beta^{2}}\right), \tag{38}
\end{align*}
$$

$$
\begin{align*}
& C=\left.\frac{\mid \Gamma\left(\alpha^{\prime}+\mathrm{i} k \beta\right.}{}+\sqrt{A+l(l+1)\left(1-\mathrm{e}^{1 / \beta}\right)+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) \\
& \Gamma\left(2 \alpha^{\prime}\right) \tag{39}\\
& \times\left|\frac{\Gamma\left(\alpha^{\prime}+\mathrm{i} k \beta-\sqrt{A+l(l+1)\left(1-\mathrm{e}^{1 / \beta}\right)+\alpha(\alpha-1)-k^{2} \beta^{2}}\right)}{\Gamma(2 \mathrm{i} k \beta)}\right|
\end{align*}
$$

It is well known that the poles of the scattering amplitude are corresponding to the bound states and the non-positive integers are the poles of the gamma function. So let
$\alpha^{\prime}+\mathrm{i} k \beta \pm \sqrt{A+l(l+1)\left(1-\mathrm{e}^{1 / \beta}\right)+\alpha(\alpha-1)-k^{2} \beta^{2}}=-n_{r}, \quad n_{r}=0,1,2, \ldots$,
we obtain

$$
\begin{equation*}
\lambda=\mathrm{i} \frac{-A+l(l+1) \mathrm{e}^{1 / \beta}+n_{r}^{2}+\left(2 n_{r}+1\right)+\alpha^{\prime}}{2 \beta\left(n_{r}+\alpha^{\prime}\right)} . \tag{41}
\end{equation*}
$$

Combining this equation with equation (12) yields the energy equation (18) of bound states again.

5. Numerical results and discussions

To show that the approximation scheme to $1 / r^{2}$ is better than that in previous works for both bound state and scattering state, first, we tabulate the energy eigenvalues calculated by equation (18) (this work), equation (15) of [6] (previous) and MATHEMATICA package programmed by Lucha and Schöberl (Schroe) [13] ${ }^{3}$ respectively for the arbitrary principal quantum number n and the angular quantum number l with two different values of parameter α and some typical values of β in tables 1 and 2. Second, we tabulate the scattering phase shifts calculated by
${ }^{3}$ The numerical eigenvalues of energy E calculated by this package are reliable enough to be regarded as the exact values.

Table 1. Eigenvalues (18) as a function of β for $4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{p}, 5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~g}, 6 \mathrm{p}, 6 \mathrm{~d}, 6 \mathrm{f}$ and 6 g states in atomic units ($\hbar=\mu=1$) and for $\alpha=0.75, A=2 \beta$.

States	$1 / \beta$	This work	Another	Previous	Schroe
2 p	0.025	-0.1204190	-0.1205270	-0.1205793	-0.1205271
	0.050	-0.1078070	-0.1082140	-0.1084228	-0.1082151
	0.075	-0.0955883	-0.0964433	-0.0969120	-0.0964469
3p	0.025	-0.0458644	-0.0458776	-0.0459297	-0.0458779
	0.050	-0.0350357	-0.0350589	-0.0352672	-0.0350633
	0.075	-0.0255592	-0.0255422	-0.0260110	-0.0255654
3d	0.025	-0.0447380	-0.0447737	-0.0449299	-0.0447743
	0.050	-0.0336315	-0.0336832	-0.0343082	-0.0336930
	0.075	-0.0238084	-0.0237106	-0.0251168	-0.0237621
4 p	0.025	-0.0208280	-0.0208087	-0.0208608	-0.0208097
	0.050	-0.0118288	-0.0117209	-0.0119292	-0.0117365
	0.075	-0.0053231	-0.0050086	-0.0054773	-0.0050945
4 d	0.025	-0.0203587	-0.0202993	-0.0204555	-0.0203017
	0.050	-0.0112807	-0.0109492	-0.0115742	-0.0109904
	0.075	-0.0047632	-0.0037985	-0.0052047	-0.0040331
4f	0.025	-0.0200966	-0.0199762	-0.0202887	-0.0199797
	0.050	-0.0108506	-0.0101784	-0.0114284	-0.0102393
	0.075	-0.0042421	-0.0022810	-0.0050935	-0.0026443
5p	0.025	-0.0098396	-0.0098055	-0.0098576	-0.0098079
5d	0.025	-0.0096106	-0.0095074	-0.0096637	-0.0095141
5f	0.025	-0.0094783	-0.0092712	-0.0095837	-0.0092825
5g	0.025	-0.0093651	-0.0090190	-0.0095398	-0.0090330
6p	0.025	-0.0043951	-0.0043531	-0.0044051	-0.0043583
6d	0.025	-0.0042767	-0.0041499	-0.0043061	-0.0041650
6f	0.025	-0.0042067	-0.0039528	-0.0042652	-0.0039803
6g	0.025	-0.0041459	-0.0037220	-0.0042428	-0.0037611

equation (38) (this work), by equation (19) of [10] (Wei's) ${ }^{4}$ and by the amplitude-shift method (APM) [16-19] respectively for some values of k, which is equivalent to energy E, and a few angular quantum number l with two different values of parameter α and some typical values of β in tables 3-5. The data in all tables show that the approximate expression in equation (5) is globally better than $1 / r^{2} \approx \mathrm{e}^{-r / \beta} /\left(\beta^{2}\left(1-\mathrm{e}^{-r / \beta}\right)^{2}\right)$ of [6] and [10] for both cases of bound states and scattering states.

It is notable that there are columns named as 'another' in tables 1 and 2 which need to be explained further. For this purpose, let

$$
\begin{equation*}
\frac{1}{r^{2}} \approx\left[c_{0}+c_{1} \frac{\mathrm{e}^{-r / \beta}}{1-\mathrm{e}^{-r / \beta}}+c_{2} \frac{\mathrm{e}^{-2 r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}\right] \tag{42}
\end{equation*}
$$

and expand the right of above equation around $r=0$ up to the first-order degree of r, we obtain

$$
\begin{equation*}
\frac{1}{r^{2}} \approx \frac{c_{2} \beta^{2}}{r^{2}}+\frac{\left(c_{1}-c_{2}\right) \beta}{r}+\left(c_{0}-\frac{c_{1}}{2}+\frac{5 c_{2}}{12}\right)+\frac{\left(c_{1}-c_{2}\right)}{12 \beta} r \tag{43}
\end{equation*}
$$

[^2]Table 2. Eigenvalues (18) as a function of β for $4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{p}, 5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~g}, 6 \mathrm{p}, 6 \mathrm{~d}, 6 \mathrm{f}$ and 6 g states in atomic units $(\hbar=\mu=1)$ and for $\alpha=1.5, A=2 \beta$.

States	$1 / \beta$	This work	Another	Previous	Schroe
2p	0.025	-0.0899026	-0.0899708	-0.0900229	-0.0899708
	0.050	-0.0797878	-0.0800389	-0.0802472	-0.0800400
	0.075	-0.0700503	-0.0705645	-0.0710332	-0.0705701
3p	0.025	-0.0369119	-0.0369130	-0.0369651	-0.0369134
	0.050	-0.0272863	-0.0272636	-0.0274719	-0.0272696
	0.075	-0.0190308	-0.0189163	-0.0193850	-0.0189474
3d	0.025	-0.0394647	-0.0394782	-0.0396345	-0.0394789
	0.050	-0.0294664	-0.0294379	-0.0300629	-0.0294496
	0.075	-0.0206641	-0.0204058	-0.0218121	-0.0204663
4 p	0.025	-0.0171972	-0.0171728	-0.0172249	-0.0171740
	0.050	-0.0090203	-0.0088935	-0.0091019	-0.0089134
	0.075	-0.0034325	-0.0030791	-0.0035478	-0.0031884
4 d	0.025	-0.0182772	-0.0182087	-0.0183649	-0.0182115
	0.050	-0.0098329	-0.0094697	-0.0100947	-0.0095167
	0.075	-0.0038986	-0.0028746	-0.0042808	-0.0031399
4f	0.025	-0.0187428	-0.0186098	-0.0189223	-0.0186137
	0.050	-0.0100472	-0.0093353	-0.0105852	-0.0094015
	0.075	-0.0038657	-0.0018402	-0.0046527	-0.0022307
5p	0.025	-0.0081154	-0.0080787	-0.0081308	-0.0080816
5d	0.025	-0.0086417	-0.0085340	-0.0086902	-0.0085415
5f	0.025	-0.0088629	-0.0086497	-0.0089622	-0.0086619
5g	0.025	-0.0089536	-0.0086002	-0.0091210	-0.0086150
6p	0.025	-0.0035249	-0.0034813	-0.0035334	-0.0034876
6d	0.025	-0.0037940	-0.0036647	-0.0038209	-0.0036813
6f	0.025	-0.0039055	-0.0036481	-0.0039606	-0.0036774
6g	0.025	-0.0039492	-0.0035214	-0.0040422	-0.0035623

which determines the expanding coefficients c_{0}, c_{1} and c_{2}

$$
\begin{equation*}
c_{0}=\frac{1}{12 \beta^{2}}, \quad c_{1}=c_{2}=\frac{1}{\beta^{2}} . \tag{44}
\end{equation*}
$$

Equations (42) and (44) can be combined as

$$
\begin{equation*}
\frac{1}{r^{2}} \approx \frac{1}{\beta^{2}}\left[\frac{1}{12}+\frac{\mathrm{e}^{-r / \beta}}{\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}\right] \tag{45}
\end{equation*}
$$

This approximate expression for $1 / r^{2}$ is equivalent to $\frac{1}{r^{2}} \approx \frac{\mathrm{e}^{-r / \beta}}{\beta^{2}\left(1-\mathrm{e}^{-r / \beta}\right)^{2}}$ used by [6, 10] plus a constant $\frac{1}{12 \beta^{2}}$. Substituting equation (45) into equation (3) and solving it for bound states, we obtain the energy eigenvalues which adds an energy-modifying term $\frac{l(l+1)}{24 \beta^{2}}$ to equation (15) of [6]. Or using the present symbol α^{\prime} we explicitly express this new energy eigenvalue formula as

$$
\begin{equation*}
E=\frac{1}{2 \beta^{2}}\left\{\frac{l(l+1)}{12}-\left[\frac{n_{r}^{2}-A+l(1+l)+\left(2 n_{r}+1\right) \alpha^{\prime}}{2\left(n_{r}+\alpha^{\prime}\right)}\right]^{2}\right\} \tag{46}
\end{equation*}
$$

where α^{\prime} is defined by equation (7). This new energy formula gives the data in column 'another' in tables 1 and 2 , which are more close to that calculated by MATHEMATICA

Table 3. Scattering phase shifts (38) as a function of $k=\sqrt{2 E}$ and β in atomic units ($\hbar=\mu=1$) for $\alpha=0.75, \alpha=1.5, A=2 \beta$ and $l=1$.

k	$1 / \beta$	$\alpha=0.75$			$\alpha=1.50$		
		This work	Wei's	APM	This work	Wei's	APM
1	0.025	4.078377	4.080845	4.068534	3.498435	3.500815	3.488585
	0.050	3.411426	3.419780	3.395210	2.865379	2.873369	2.848778
	0.075	3.025185	3.042095	3.005469	2.507983	2.524046	2.487432
3	0.025	1.798463	1.799536	1.795341	1.295082	1.296119	1.291952
	0.050	1.567100	1.570864	1.562570	1.079695	1.083308	1.075098
	0.075	1.430458	1.438260	1.425815	0.957119	0.964578	0.952118
5	0.025	1.221311	1.222021	1.219492	0.734300	0.734987	0.732582
	0.050	1.081530	1.084051	1.079156	0.605317	0.607747	0.602703
	0.075	0.998536	1.003812	0.996350	0.531958	0.537024	0.529513
7	0.025	0.948985	0.949522	0.947793	0.468828	0.469349	0.467551
	0.050	0.848817	0.850741	0.847193	0.376938	0.378796	0.375245
	0.075	0.789165	0.793213	0.787848	0.324730	0.328627	0.323265
9	0.025	0.788239	0.788675	0.787290	0.311802	0.312225	0.310820
	0.050	0.710170	0.711738	0.708987	0.240500	0.242016	0.239238
	0.075	0.663582	0.666893	0.662713	0.200027	0.203221	0.199050
11	0.025	0.681352	0.681720	0.680576	0.207235	0.207593	0.206441
	0.050	0.617381	0.618711	0.616427	0.149014	0.150302	0.148061
	0.075	0.579146	0.581961	0.578578	0.115996	0.118715	0.115352
13	0.025	0.604773	0.605093	0.604086	0.132235	0.132546	0.131600
	0.050	0.550580	0.551738	0.549771	0.083058	0.084180	0.082227
	0.075	0.518147	0.520604	0.517611	0.055189	0.057565	0.054712
15	0.025	0.547024	0.547307	0.546498	0.075625	0.075900	0.075055
	0.050	0.500010	0.501038	0.499365	0.033070	0.034068	0.032230
	0.075	0.471843	0.474028	0.471500	0.008971	0.011086	0.008611

package 'Schroe' than that calculated by equation (18). This fact shows that equation (45) is a much better approximation for $1 / r^{2}$ than equation (5) in the case of the bound state. But unfortunately, this approximation is unavailable to the scattering states ${ }^{5}$.

We are now going to study the special case of our results. We focus our discussion on the s-wave case $(l=0)$. It is worth pointing out that when $l=0, \alpha^{\prime}=\alpha$, for $\alpha \geqslant 1 / 2$ and $\alpha^{\prime}=1-\alpha$, for $\alpha<1 / 2$. Therefore, from equations (18) and (7) we obtain the energy eigenvalues of bound states with $l=0$

$$
E= \begin{cases}-\frac{1}{2 \beta^{2}}\left[\frac{A-\alpha}{2\left(n_{r}+\alpha\right)}-\frac{n_{r}\left(n_{r}+2 \alpha\right)}{2\left(n_{r}+\alpha\right)}\right]^{2}, & \alpha \geqslant \frac{1}{2} \tag{47}\\ -\frac{1}{2 \beta^{2}}\left[\frac{A-\left(n_{r}+1\right)^{2}+\left(2 n_{r}+1\right) \alpha}{2\left(n_{r}-\alpha+1\right)}\right]^{2}, & \alpha<\frac{1}{2}\end{cases}
$$

[^3]Table 4. Scattering phase shifts (38) as a function of $k=\sqrt{2 E}$ and β in atomic units ($\hbar=\mu=1$) for $\alpha=0.75, \alpha=1.5, A=2 \beta$ and $l=2$.

k	$1 / \beta$	$\alpha=0.75$			$\alpha=1.50$		
		This work	Wei's	APM	This work	Wei's	APM
1	0.025	3.567518	3.574115	3.536993	3.256749	3.263224	3.226085
	0.050	2.912734	2.934458	2.860610	2.632455	2.653679	2.579780
	0.075	2.535631	2.578602	2.468167	2.280725	2.322551	2.212170
3	0.025	1.590218	1.593113	1.580589	1.297994	1.300845	1.288454
	0.050	1.363000	1.372973	1.348109	1.085138	1.094930	1.069957
	0.075	1.228530	1.248921	1.211534	0.963128	0.983110	0.945802
5	0.025	1.079300	1.081229	1.073690	0.789801	0.791705	0.784200
	0.050	0.941699	0.948460	0.933426	0.662002	0.668654	0.653695
	0.075	0.859432	0.873425	0.850910	0.588379	0.602124	0.579602
7	0.025	0.835674	0.837144	0.831736	0.547074	0.548525	0.543099
	0.050	0.736897	0.742093	0.731392	0.455857	0.460975	0.450388
	0.075	0.677469	0.688298	0.672271	0.403158	0.413810	0.397774
9	0.025	0.690936	0.692133	0.687966	0.402727	0.403909	0.399691
	0.050	0.613847	0.618103	0.609798	0.331844	0.336039	0.327756
	0.075	0.567256	0.576166	0.563785	0.290812	0.299583	0.287143
11	0.025	0.594256	0.595269	0.592031	0.306243	0.307245	0.303806
	0.050	0.531019	0.534641	0.527866	0.248297	0.251869	0.245128
	0.075	0.492664	0.500272	0.490115	0.214702	0.222197	0.212034
13	0.025	0.524752	0.525635	0.522908	0.236846	0.237718	0.234879
	0.050	0.471132	0.474295	0.468683	0.187852	0.190973	0.185279
	0.075	0.438515	0.445177	0.436533	0.159413	0.165979	0.157268
15	0.025	0.472195	0.472978	0.470441	0.184348	0.185121	0.182624
	0.050	0.425642	0.428456	0.423507	0.141916	0.144694	0.139667
	0.075	0.397254	0.403194	0.395742	0.117260	0.123117	0.115637

This equation is the same as equation (21) of [6]. On the other hand, for the scattering states, from equations (38) and (39) we have phase shift and the normalization constant

$$
\delta_{l}= \begin{cases}\frac{\pi}{2}+\arg \Gamma(2 \mathrm{i} k \beta) & \tag{48}\\ -\arg \Gamma\left(\alpha+\mathrm{i} k \beta+\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) & \\ -\arg \Gamma\left(\alpha+\mathrm{i} k \beta-\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right), & \alpha \geqslant \frac{1}{2} ; \\ \frac{\pi}{2}+\arg \Gamma(2 \mathrm{i} k \beta) & \\ -\arg \Gamma\left(1-\alpha+\mathrm{i} k \beta+\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) & \\ -\arg \Gamma\left(1-\alpha+\mathrm{i} k \beta-\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right), & \alpha<\frac{1}{2} .\end{cases}
$$

Table 5. Scattering phase shifts (38) as a function of $k=\sqrt{2 E}$ and β in atomic units ($\hbar=\mu=1$) for $\alpha=0.75, \alpha=1.5, A=2 \beta$ and $l=3$.

k	$1 / \beta$	$\alpha=0.75$			$\alpha=1.50$		
		This work	Wei's	APM	This work	Wei's	APM
1	0.025	3.251157	3.263163	3.188826	3.049200	3.061072	2.986780
	0.050	2.620476	2.659014	2.510919	2.445868	2.483864	2.335816
	0.075	2.264790	2.339330	2.117855	2.112295	2.185621	1.964331
3	0.025	1.470162	1.475527	1.450462	1.268193	1.273510	1.248460
	0.050	1.249831	1.268042	1.218083	1.061025	1.079047	1.029207
	0.075	1.119852	1.156673	1.081857	0.942306	0.978700	0.903861
5	0.025	1.000100	1.003703	0.988751	0.796884	0.800460	0.785527
	0.050	0.866094	0.878570	0.848637	0.671952	0.684314	0.654320
	0.075	0.785575	0.811177	0.766094	0.599351	0.624694	0.579642
7	0.025	0.774097	0.776853	0.766189	0.570064	0.572800	0.562075
	0.050	0.677620	0.687265	0.665798	0.480625	0.490189	0.468856
	0.075	0.618980	0.638934	0.607054	0.428196	0.447965	0.415884
9	0.025	0.639178	0.641428	0.633056	0.434581	0.436815	0.428416
	0.050	0.563720	0.571649	0.555048	0.364923	0.372789	0.356121
	0.075	0.517472	0.533964	0.508886	0.323829	0.340178	0.315312
11	0.025	0.548759	0.550668	0.543770	0.343750	0.345647	0.338815
	0.050	0.486752	0.493519	0.479904	0.286701	0.293417	0.279710
	0.075	0.448500	0.462630	0.442201	0.252879	0.266891	0.246629
13	0.025	0.483596	0.485260	0.479453	0.278271	0.279925	0.274157
	0.050	0.430942	0.436865	0.425394	0.229963	0.235843	0.224334
	0.075	0.398286	0.410692	0.393407	0.201206	0.213511	0.196257
15	0.025	0.434225	0.435704	0.430689	0.228650	0.230120	0.225077
	0.050	0.388454	0.393735	0.383699	0.186758	0.192000	0.181955
	0.075	0.359940	0.371025	0.355967	0.161733	0.172731	0.157720

$$
C=\left\{\begin{array}{l}
\frac{\left|\Gamma\left(\alpha+\mathrm{i} k \beta+\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) \Gamma\left(\alpha+\mathrm{i} k \beta-\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right)\right|}{\Gamma(2 \alpha)|\Gamma(2 \mathrm{i} k \beta)|}, \tag{49}\\
\quad \alpha \geqslant \frac{1}{2} ; \\
\frac{\left|\Gamma\left(1-\alpha+\mathrm{i} k \beta+\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right) \Gamma\left(1-\alpha+\mathrm{i} k \beta-\sqrt{A+\alpha(\alpha-1)-k^{2} \beta^{2}}\right)\right|}{\Gamma(2(1-\alpha))|\Gamma(2 \mathrm{i} k \beta)|}, \\
\alpha<\frac{1}{2} .
\end{array}\right.
$$

The first formulae of equations (48),(49) have been given without distinction between $\alpha \geqslant \frac{1}{2}$ and $\alpha<\frac{1}{2}$ in $[9,10]$. However, the second formulae of the above two equations have been missed by authors of $[9,10]$. We have calculated the phase shifts for both cases of $\alpha \geqslant \frac{1}{2}$ and $\alpha<\frac{1}{2}$ by APM and find that the first formula of equation (48) is only applicable to the case of $\alpha \geqslant \frac{1}{2}$. Nevertheless, the phase shifts calculated by the first formula of equation (48) do not coincide with that obtained by APM for $\alpha<\frac{1}{2}$, but those given by the second formulae of equation (48) do.

6. Concluding remarks

We have proposed a new approximation scheme for the centrifugal term with which we have obtained new approximate analytical solutions for the bound and scattering states with any l-state. For the bound state, the energy eigenvalues are given by equation (18), and the normalized wavefunctions are expressed by equations (19) and (22). For the scattering state, the phase shifts and wavefunctions normalized on the ' $k / 2 \pi$ scale' are given by equations (30), (38) and (39). On the other hand, we have also numerically solved the Schrödinger equation with the Manning-Rosen potential as well as any l values for both bound state and scattering state. The comparison of numerical results with approximate ones in both bound and scattering state cases shows that our new approximate formula to $1 / r^{2}$ is better than that used in the literature. Furthermore, we have developed another approximate formula for $1 / r^{2}$ available to bound states. The energy eigenvalues calculated according to this formula, equation (46), are in better agreement with that obtained by the numerical integration method. Finally, from our results, we naturally derived the complete s-wave scattering state solutions for the Manning-Rosen potential. We hope that the results obtained in this paper could enlarge and enhance the application of the Manning-Rosen potential in the relevant fields of physics and the method used in this work could be used in other bound and scattering state problems.

Acknowledgments

The authors would like to thank the kind referees for the positive and invaluable suggestions which have improved the manuscript greatly. This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (program no: SJ08A13).

References

[1] Manning M F and Rosen N 1933 Phys. Rev. 44953
[2] Rosen N and Morse P M 1932 Phys. Rev. 42210
[3] Dong S H and García-Ravelo J 2007 Phys. Scr. 75307
[4] Hulthén L 1942 Ark. Mat. Astron. Fys. A 285
[5] Diaf A, Chouchaoui A and Lombard R J 2005 Ann. Phys. 317354
[6] Qiang W C and Dong S H 2007 Phys. Lett. A 36813
[7] Ikhdair S M and Sever R arXiv:0801.4271v1 [quant-ph]
[8] Ikhdair S M and Sever R arXiv:0801.3518v1 [quant-ph]
[9] Chen C Y, Lu F L and Sun D S 2007 Phys. Scr. 76428
[10] Wei G F, Long C Y and Dong S H 2008 Phys. Lett. A 3722592
[11] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products 5th edn (New York: Academic)
[12] Abbott P 2007 Private communication
[13] Lucha W and Schöberl F F 1999 Int. J. Mod. Phys. C 10607
[14] Schiff L I 1955 Quantum Mechanics 3rd edn (New York: McGraw-Hill)
[15] Landau L D and Lifshitz E M 1977 Quantum Mechanics, Non-Relativistic Theory 3rd edn (Oxford: Pergamon)
[16] Milne W E 1930 Phys. Rev. 35863
[17] Wheeler J A 1937 Phys. Rev. 521123
[18] Thylwe K E 2008 J. Phys. A: Math. Theor. 41115304
[19] Thylwe K E 2008 Phys. Scr. 77065005

[^0]: ${ }^{1}$ If we compute some Taylor series, it seems that the error in equation (4) is $O(1)$, as $r \rightarrow 0$, the error in (5) is $O(1 / r)$. But in fact, if we let $x=1 / \beta$, and expand the right-hand side of equation (5) around $r=0$ and $x=0$, we would see that though there is a $1 / r$ term, it is proportional to x^{2}, as a result, for large $\beta(x \rightarrow 0)$, this term $\rightarrow 0$.

[^1]: $2 \mathrm{http}: / /$ functions.wolfram.com/07.23.17.0058.01.

[^2]: 4 The general asymptotic expression of the scattering state should be proportional to $\sin \left(k r-\frac{1}{2} l \pi+\delta_{l}\right)$ [14, 15] instead of $\sin \left(k r+\delta_{l}\right)$ used by Wei [10]. We have added $\frac{1}{2} l \pi$ to the formula of the phase shift in Ref. [10] when we calculate.

[^3]: ${ }^{5}$ If we use equation (45) to study the scattering states, calculations similar to that in section 4 lead us to compare $R(r) \underset{r \rightarrow \infty}{\longrightarrow}=2 C \Gamma(c)\left|\frac{\Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}\right| \sin \left(k^{\prime} r+\delta+\frac{\pi}{2}\right)$ with $R(r)=2 \sin \left(k r-\frac{\pi}{2} l+\delta_{l}\right)$, where $k^{\prime}=\sqrt{2\left(E-c_{0} l(l+1)\right)}$ and $k=\sqrt{2 E}$. It is obvious that $k^{\prime} r$ cannot completely cancel $k r$ unless we take $k^{\prime} \approx k$ in this case. This situation shows that equation (45) is not proper for the scattering state.

